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Abstract

The problem of the evolution of a single spherical bubble in an infinite liquid is considered, as the result of a variation of the pressure
in the liquid at an infinite distance from the bubble. It has been assumed the bubble is filled with vapor from the surrounding liquid or
insoluble gas. The question of the fulfillment of the integral energy conservation law is investigated using different ways of describing the
hydrodynamic and heat and mass exchange processes in both the bubble and surrounding liquid and at the bubble interface. Kinetic
and internal energy of vapor (gas) in the bubble, kinetic and internal energy of the liquid, and energy of surface tension are taken into
account in the energy balance. The liquid is assumed to be incompressible, viscous and heat-conducting, the vapor (gas) to be nonviscous,
heat-conducting and obeying the Clapeyron equation. Thermal–physical properties, exclusive of specific heats, are allowed to be temper-
ature-dependent. For the above suppositions and assumptions, a mathematical model ensuring exact fulfillment of the integral energy
conservation law has been developed. It has been shown that the conservation integral can be fulfilled by the given model. As simplified
variants of the principal model, models of the uniform bubble and pressure uniform bubble, have been proposed which ensure the exact
fulfillment of the integral energy balance disregarding the relatively small vapor kinetic energy. A relation defining the imbalance in the
integral energy conservation law for some often-used extra simplifications has been derived.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Cavitation involving a single spherical bubble with var-
iation of pressure in the surrounding liquid is a model
problem of fundamental importance for the understanding
of processes associated with cavitation. By now a number
of approaches to solving the problem using mathematical
models have been proposed [1–4]. To one extent or another
all these approaches are based on various simplifications of
real physical processes. It should be noted that in the prob-
lem at hand correctly taking into account some physical
effects, e.g., liquid viscosity or surface tension, would lead
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to the necessity of simultaneous introduction of modifica-
tions in several equations. This is especially true where
phase transitions that influence the kinematic, dynamic
and thermal aspects of the problem are taken into account.
Clearly, the simplified description of such processes under
these conditions is not uniquely defined and can be made
in various ways. It should also be noted that the correct-
ness of a given simplification depends, among other things,
on the aim of an investigation. For example, in studies of
bubble dynamics, models assuming either the constancy
of temperatures in the bubble and surrounding liquid or
the complete absence of heat exchange between the bubble
and liquid, are of widespread occurrence [2,3]. It is obvious
that for any application sensitive to varying temperature
in the bubble, both suppositions mentioned are not
acceptable.
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Nomenclature

A work done by external pressure forces
c liquid specific heat capacity
cV heat capacity of the vapor at constant volume
cp specific heat capacity at constant pressure
K kinetic energy of the liquid
E internal energy
Er surface energy
i specific enthalpy
j mass of vapor condensing per unit time on unit

area of the interface
F parameter in Eq. (38)
q heat flux
p pressure
r radial coordinate
R radius of the bubble
RV gas constant
S area of the bubble surface
t current time
T temperature
u velocity
U liquid velocity at the bubble boundary

V volume of the bubble
w vapor velocity at the bubble

Greek symbols

a parameter in Eqs. (53)–(56)
b parameter in Eq. (38)
c ratio of specific heats
e specific internal energies
k thermal conductivity coefficient
l dynamic coefficient of viscosity
h temperature increment
q density
r coefficient of surface tension
s friction stress
U dissipative function
w heat of phase transition

Subscripts
s steam–water interface
v vapor
0 initial value
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Therefore, the comparison of the quality of mathemati-
cal models based on different ways of simplification of pro-
cesses in the problem at hand is not uniquely defined. In
this work a new approach on the basis of the energy con-
servation integral law is proposed. It should be noted that
the currently available models including those that were
studied in detail [1] do not ensure the exact fulfillment of
the energy integral balance. Hence the first objective of this
article is to obtain such a mathematical model on the basis
of general laws of hydromechanics and thermodynamics
with heat-and-mass exchange, which could ensure the exact
fulfillment of the integral law for the problem at hand with
the minimum number of assumptions. The second objec-
tive is to assess the effects of an imbalance in integral
energy conservation that can arise for certain typical devi-
ations from the basic mathematical model.

2. The formulation of the problem and some intermediate

relationships

The process of compression or expansion of a vapor or
gas bubble (in the absence of dissolution) is considered at a
change of pressure in the surrounding liquid. For definite-
ness, we will examine the case of compression of the vapor
bubble. At the initial time moment, the liquid and vapor
are in equilibrium and have temperature T0. We take the
following physical hypotheses and assumptions.

(1) As in the majority of works, the problem is consid-
ered under the spherical-symmetry assumption. Prob-
able reasons of a deviation of the bubble shape from
spherical have been investigated in [5].

(2) The liquid is assumed to be incompressible, viscous
(Newtonian liquid), and heat-conducting. Models
including compressibility of the liquid have been
described in [6].

(3) The vapor in the bubble is considered as nonviscous,
heat-conducting and describable by the Clapeyron
equation.

(4) At the interface, the vapor temperature is set equal to
the liquid temperature and the vapor pressure is made
to correspond to the liquid temperature on the satu-
ration curve.

(5) In contrast to other models, the viscosity and surface
tension are assumed to be variable (for example,
depending on temperature). As a result, additive
terms will appear in some of the relevant equations.
The influence of viscosity and surface tension on
the dynamics of bubbles at constant values of perti-
nent coefficients was investigated in [7]. Thermal con-
ductivity of liquid and vapor are also assumed to be
variable, but heat capacity of liquid and vapor are
considered to be constant.

In the case of spherical symmetry, the equation of
motion and the solution of a continuity equation for New-
tonian incompressible liquid can be written in the form [8]:

q
ou
ot
þ u

ou
or

� �
¼ � op

or
þ os

or
þ 2

r
s� 2lu

r

� �
; s ¼ 2l

ou
or
ð1Þ



H. Yang et al. / International Journal of Heat and Mass Transfer 51 (2008) 3623–3629 3625
u ¼ 1

r2
UR2 ð2Þ

Here t, r are the time and radial coordinates; u, q are liquid
velocity and density; p is the ambient pressure; l is the dy-
namic coefficient of viscosity; s is the friction stress; R is the
radius of the bubble; U is the liquid velocity at the bubble
boundary, related to the velocity of motion of the bubble
boundary as follows:

dR
dt
¼ U � j

q
ð3Þ

Here j is the mass of vapor condensing per unit time on unit
area of the interface. Integrating Eq. (1) with respect to ra-
dius from r = R to r =1 and considering that s ? 0 with
r ?1, we obtain, using (2) and (3), the following
equation:

q R
dU
dt
þ 3

2
U

dR
dt

� �
¼ pR � p1 � sR � Xþ 1

2
jU ;

X ¼ 12UR2

Z 1

R
lr�4dr ð4Þ

Here p1 is the liquid pressure at an infinite distance from
the bubble, pR and sR are liquid pressure and friction stress
at the interface.

We use the energy equation for the liquid surrounding
the bubble:

qc
oT
ot
þ u

oT
or

� �
¼ 1

r2

o

or
r2k

oT
or

� �
þ U;

U ¼ 12lU 2R4r�6 ð5Þ

Here c, k, T are the liquid specific heat capacity, thermal
conductivity coefficient and temperature. U is a dissipative
function. Considering Eq. (2), we rearrange Eq. (5) to the
form:

qc
o

ot
ðr2hÞ þ qcUR2 oh

or
¼ � o

or
ðr2qÞ þ r2U;

q ¼ �k
oh
or

Here h = T � T0, and q is the specific heat flux due to heat
conduction in the liquid.

Consider now processes within the bubble. The Clapey-
ron equation and the motion, continuity and energy equa-
tions for an inviscid perfect gas have the form:

pV ¼ qVRVT V ð7Þ

qV

ow
ot
þ qVw

ow
or
¼ � opV

or
ð8Þ

oqV

ot
þ 1

r2

o

or
ðqVwr2Þ ¼ 0 ð9Þ

qVcp
oT V

ot
þ w

oT V

or

� �
¼ opV

ot
þ w

opV

or
� 1

r2

o

or
ðr2qVÞ;

qV ¼ �kV

oT V

or
ð10Þ
Here pV, qV, TV, RV, kV, cp, w, qV denote pressure, density,
temperature, gas constant, thermal conductivity coefficient,
specific heat capacity at constant pressure, velocity and
heat flux. We note for later reference that from Eqs. (7),
(9), (10) the following formula can be derived:

1

c� 1

Z
V

opV

ot
dV þ c

c� 1
pVS

dV
dt
þ cpJT VS

¼
Z

V
w

opV

or
dV � SqVS ð11Þ

Here V, S are the volume and area of the bubble surface; c
is the specific heat ratio; TVS and pVS are the vapor temper-
ature and pressure at the bubble boundary; J = jS, qVS is
the specific heat flux from the vapor to the bubble surface.

Now consider the conditions to be applied at the inter-
face. Using relationships for the interface from reference
[2] we can write:

pR ¼ pVS þ sR �
2r
R
� jðU � wSÞ ð12Þ

qS � qVS ¼ jwþ j
q

2r
R
� dr

dt
þ 1

2
jðU � wSÞ2 ð13Þ

w ¼ iVS � i�S ð14Þ

Here r is the coefficient of surface tension, qS is the specific
heat flux through the interface to liquid, wS, iVS are the va-
por velocity and enthalpy at the interface, i�S is the liquid
enthalpy at the temperature and vapor pressure at the
interface (note that this is not equal to the liquid enthalpy
at the interface). From Eqs. (13), (14) it follows that w is a
heat of phase transition at a flat surface for infinitely small
velocities of the liquid and vapor.

Now consider some thermodynamic aspects of the prob-
lem. At constant specific heat capacities, the specific inter-
nal energies and specific enthalpies of the liquid and vapor
are defined by the formulas:

e ¼ chþ e0; i ¼ eþ p
q
; eV ¼ cVT V þ eV0;

iV ¼ eV þ
pV

qV

¼ cpT V þ eV0 ð15Þ

Here cV is the heat capacity of the vapor at constant vol-
ume. The constants e0 and eV0 are correlated with each
other through a heat of phase transition (note that for
the problem at hand one of these constants may be as-
signed arbitrarily). Setting w0 to be the heat of phase tran-
sition at the initial temperature and pressure values, and
using Eqs. (14) and (15), one can obtain:

eV0 ¼ e0 þ w0 � cpT 0 þ
pV0

q
ð16Þ

Here pV0 is the initial vapor pressure. Using the designation
hS = TS � T0, we rearrange Eq. (14) into the form:

w ¼ w0 þ hSðcp � cÞ � ðpVS � pV0Þ
q

ð17Þ
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3. Integral energy balance

We will introduce designations:

K ¼
Z 1

R

1

2
qu24pr2dr ¼ 2pqU 2R3; E ¼

Z 1

R
qe4pr2dr;

KV ¼
Z

V

1

2
qVw2dV ;

EV ¼
Z

V
qVeVdV ; Er ¼ rS; A ¼ �USp1

ð18Þ

Here K, E are the kinetic and internal energies of the liquid;
KV, EV are the kinetic and internal energies of the vapor;
Er is the surface energy; A is the work done by external
pressure forces. Using Eqs. (3), (4), (12), we obtain:

dK
dt
¼ 2pq

d

dt
ðU 2R3Þ ¼ qUS R

dU
dt
þ 3

2
U

dR
dt

� �

¼ USpVS � USX� US
2r
R
� 1

2
JU 2 þ JUwS þ A ð19Þ

For the vapor internal energy, using Eqs. (7), (9), (11),
(13)–(15), we can obtain upon rearrangement:

dEV

dt
¼ 1

c� 1

Z
V

opV

ot
dV þ qVS eVS � eV0ð Þ dV

dt
� eV0J

¼ �pVS

dV
dt
� SqVS þ

Z
V

w
opV

or
dV � iVSJ

¼ �pVS

dV
dt
� SqS þ

Z
V

w
opV

or
dV � iVSJ þ Jw

þ S
j
q

2r
R
� dr

dt

� �
� JUwS þ

1

2
JU 2 þ 1

2
Jw2

S

¼ �SUpVS � SqS þ
Z

V
w

opV

or
dV

þ S
j
q

2r
R
� dr

dt

� �
� JUwS þ

1

2
JU 2 þ 1

2
Jw2

S � JeS

ð20Þ

Here eS is the specific internal energy of the liquid at the
interface.

For the liquid internal energy, with the use of Eqs. (6),
(15), under the assumption that the heat flux for the radius
approaching infinity tends to zero faster than the radius
squared, we shall obtain:

dE
dt
¼ 4p

Z 1

R
q

oe
ot

r2dr � qR2eS

dR
dt

� �

¼ 4p �qUR2e0 þ R2qS þ
1

4p
USX� qR2eS

dR
dt
� U

� �� �

¼ SqS þ JeS þ USX� qUSe0

ð21Þ

Combining Eqs. (19)–(21), we shall obtain the following
expression:
dK
dt
þ dE

dt
þ dEV

dt
þ dEr

dt
� Aþ qUSe0

¼
Z

V
w

opV

or
dV þ 1

2
Jw2

S ð22Þ

For kinetic energy of the vapor in the bubble:

dKV

dt
¼ 2p

Z R

0

oðqVw2Þ
ot

r2dr þ 1

2
Sw2

SqVS

dR
dt

¼ 2p
Z R

0

oðqVw2Þ
ot

r2dr þ 1

2
SqVSw3

S �
1

2
Jw2

S ð23Þ

From Eqs. (8), (9), upon rearrangement, one can derive the
following equation:

r2 o

ot
ðqVw2Þ þ o

or
ðqVw3r2Þ ¼ �2wr2 opV

or
ð24Þ

Substituting Eq. (24) in (23), we obtain:

dKV

dt
¼ �

Z R

0

4pr2w
opV

or
dr � 1

2
Jw2

S ¼ �
Z

V
w

opV

or
dV � 1

2
Jw2

S

ð25Þ

Combining now Eqs. (22) and (25), we obtain the integral
energy equation in the following final form:

dK
dt
þ dKV

dt
þ dE

dt
þ dEV

dt
þ dEr

dt
¼ A� qUSe0 ð26Þ

It should be noted that in the spherical symmetry condi-
tions, the product US is equal to the volumetric flow rate
through any closed surface including the centre of symme-
try, including also a spherical surface with an infinite
radius. And so, Eq. (26) reveals that an increase in the total
energy of system equals the work done by impressed forces
plus the internal energy arriving in the system along with
mass of the liquid inflowing through the infinitely distant
boundary of the system. It is obvious that Eq. (26) is an
exact expression of the integral law of energy conservation
for the problem at hand in the context of the physical man-
made assumptions.
4. The fundamental mathematical model

When deriving Eq. (26), the equations were used which,
upon some formal rearrangement, may be presented as
follows:

q R
dU
dt
þ 3

2
U 2

� �
¼ pVS � p1 �

2r
R
� 12UR2

Z 1

R
lr�4dr

þ jU þ jwS ð27Þ

qc
o

ot
ðr2hÞ þ qcUR2 oh

or
¼ o

or
r2k

oh
or

� �
þ 12lU 2R4r�4 ð28Þ

pV ¼ qVRVT V ð29Þ

qV

ow
ot
þ qVw

ow
or
¼ � opV

or
ð30Þ

oqV

ot
þ 1

r2

o

or
qVwr2
� �

¼ 0 ð31Þ
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qVcp
oT V

ot
þ w

oT V

or

� �
¼ opV

ot
þ w

opV

or
þ 1

r2

o

or
r2kV

oT V

or

� �

ð32Þ
dR
dt
¼ U � j

q
ð33Þ

qS � qVS ¼ jwþ j
q

2r
R
� dr

dt
� jUwS þ

1

2
jU 2 þ 1

2
jw2

S ð34Þ

w ¼ w0 þ hSðcp � cÞ � ðpVS � pV0Þ
q

ð35Þ

d
dt

Z
V

qVdV ¼ �jS; ð36Þ

In the above system, Eqs. (28)–(32), (36) are general for
hydrodynamics, therefore, all the specific character of the
problem at hand and hence of the mathematical model
belongs to Eqs. (27), (33)–(35). Here, Eq. (27) derived from
Eqs. (1)–(3), (12) may be considered as generalization of
the well known Rayleigh–Plesset equation [3] for the case
of available phase transitions and the variable viscosity
coefficient of the liquid.

Eqs. (27)–(36) describe evolution of both vapor and gas
bubbles. Since the relation between the pressure and tem-
perature of the vapor at the bubble surface through the sat-
uration curve has not been used, for a change in these
equations from the case of the vapor to the case of insoluble
gas, it would be sufficient to put j = 0. As this takes place the
constants e0 and eV0 become independent variables.

It is easy to check that the system of Eqs. (27)–(36) is not
sufficient to define the evolution of the vapor bubble, as its
number of unknown variables is more by one than the
number of equations. To complete the mathematical model
in this case, the system of Eqs. (27)–(36) must be supple-
mented with an equation for the saturation curve:

pVS ¼ f ðT SÞ ð37Þ

Eq. (37) is assignable in different forms, e.g., in the form of
the Clapeyron–Clausius equation [9]. It may also take into
account the effect of the surface curvature on the saturation
vapor pressure [10]. It is however clear that the fulfillment
of the integral energy balance will not be susceptible to the
specific form of Eq. (37).

We note for the following discussion that the complete
system of Eqs. (27)–(37) includes algebraic equations,
ordinary differential equations, four partial differential
equations and two integro-differential equations. Along
with boundary and initial conditions, that are sufficiently
evident for the problem at hand, this system of equations
constitutes the mathematical model that will be adopted
as the fundamental model. The model is complicated,
and only numerical solutions can be obtained for it. How-
ever, in a special case, when the pressure p1 is constant, the
basic model has a specific analytical solution in the form of
a conservation integral, i.e., there is a function F which is a
certain combination of relevant parameters and indepen-
dent of time. Yield the function, it would be simplest to
integrate Eq. (26) over time and take into account that
the integral of the product US, taken with inverse sign, is
equal to a volume of the liquid having come to the system
through the outer infinitely distant boundary, and it may
be expressed through a variation in the bubble volume
and mass. Cutting out intermediate manipulations, we give
the final result:

F ¼ 2pqU 2R3 þ 2p
Z R

0

qVw2r2dr þ rS þ 4pqc
Z 1

R
hr2dr

þ V
�pV

c� 1
þ p1

� �
þ bmV ¼ const

�pV ¼
1

V

Z
V

pVdV ; mV ¼
Z

V
qVdV ;

b ¼ w0 � cpT 0 þ
pV0 � p1

q

ð38Þ
5. The model of the pressure uniform bubble

One radical way to simplify the problem is the introduc-
tion of a supposition of pressure uniformity throughout the
volume of the bubble (homobaricity) [1]. Spatial nonuni-
formities of pressure in gas are small as compared to the
average pressure when the velocity is much less than the
sound speed [11]. With the use of the homobaricity suppo-
sition, the momentum Eq. (30) is no longer present in the
system of equations, and the number of partial differential
equations is diminished by unity. And using the approach
[12] the number of partial differential equations may be fur-
ther diminished by unity as follows. First, using Eq. (31)
the velocity is eliminated from Eq. (32), then using Eq.
(29) the temperature is excluded from the equation
obtained. As a result, instead of Eqs. (31), (32), we obtain
the equation for the vapor density:

r2 oqV

ot
¼ 1

cp

o

or
r2kV

qV

oqV

or

� �
þ 1

3cpV

dpV

dt
o

or
ðqVr3Þ ð39Þ

Integrating Eq. (39) with respect to radius from 0 to the
bubble radius R, we shall obtain upon rearrangement:

dpV

dt
¼ � 3ðc� 1Þ

R
kVpV

q2
VSRV

oqV

or

����
r¼R

þ jcpT VS þ
cpV

c� 1

dR
dt

� �

ð40Þ

It is easy to demonstrate that Eqs. (39), (40) offer also the
automatic fulfillment of integral mass balance Eq. (36).

Although the rearrangement proposed above makes it
possible to exclude the vapor velocity from the problem,
it can be easily calculated for any time from the continuity
equation. The velocity distribution may be formally used
for calculation of the vapor kinetic energy and substitution
into Eq. (26) however the equality (26) will not be fulfilled
in such an approach. The point is that to obtain Eq. (26), it
is necessary that the velocity and pressure of the vapor
would also satisfy the equation of motion (30), but this is
impossible for the model of the homobaric bubble. Thus,
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the supposition as to pressure uniformity in the bubble is
incompatible with the exact fulfillment of the integral
energy Eq. (26).

For the problem in hand, the kinetic energy of the vapor
or gas in the bubble makes up, as a rule, a small portion of
the total energy of the system. If this energy can be
neglected, the energy conservation law will obviously have
the following form:

dK
dt
þ dE

dt
þ dEV

dt
þ dEr

dt
¼ A� qUSe0 ð41Þ

As it follows from Eq. (22), the gas bubble (j = 0) main
equations, under the assumption of pressure uniformity,
result in the identical fulfillment of Eq. (41) without any
modifications. In the case of the vapor bubble (j 6¼ 0), it
can be that Eq. (41) would be fulfilled, if it is presupposed
in addition that at the interface the vapor velocity is much
less than the liquid velocity and, as a result, the value of wS

in Eqs. (12), (13) may be neglected. Note, for the gas bub-
ble wS = U, however, with an available phase transition, a
situation where jwSj � jUj, is quite possible.

Let us take the assumption as to the pressure uniformity
through the bubble volume, and the conditions jwSj � jUj.
Then the system of equations for the pressure uniform bub-
ble model will have the form:

q R
dU
dt
þ 3

2
U 2

� �
¼ pV � p1 �

2r
R
� 12UR2

Z 1

R
lr�4drþ jU

ð42Þ

qc
o

ot
ðr2hÞ þ qcUR2 oh

or
¼ o

or
r2k

oh
or

� �
þ 12lU 2R4r�4 ð43Þ

pV ¼ qVRVT V ð44Þ

r2 oqV

ot
¼ 1

cp

o

or
r2kV

qV

oqV

or

� �
þ 1

3cpV

dpV

dt
o

or
ðqVr3Þ ð45Þ

dpV

dt
¼ � 3ðc� 1Þ

R
kVpV

q2
VSRV

oqV

or

����
r¼R

þ jcpT VS þ
cpV

c� 1

dR
dt

� �

ð46Þ
dR
dt
¼ U � j

q
ð47Þ

qS � qVS ¼ jwþ j
q

2r
R
� dr

dt
þ 1

2
jU 2 ð48Þ

w ¼ w0 þ hSðcp � cÞ � ðpV � pV0Þ
q

ð49Þ

pV ¼ f ðT SÞ ð50Þ

It is easy to confirm that a consequence of Eqs. (42)–(50) is
the integral energy conservation law without regard to the
vapor kinetic energy in the form of Eq. (41).

6. The model of the uniform bubble

The next natural step towards simplifying the mathe-
matical model is the introduction of the assumption that
not only pressure but temperature (and therefore, density)
is also uniform throughout the bubble volume. Using this
assumption for the further simplification of the homobaric
model, on some rearrangement we obtain the model of the
uniform bubble, consisting of Eqs. (42)–(44), (47), (49),
(50) and equations:

1

c� 1

dðpVV Þ
dt

þ pV

dV
dt
¼ �SqS þ Jwþ J

q
2r
R
� S

dr
dt

þ 1

2
JU 2 � cpJT V ð51Þ

d

dt
ðqVV Þ ¼ �J ð52Þ

The model of the uniform bubble contains only one partial
differential equation – the energy equation for the liquid
(43). It is interesting to note that the uniform bubble model
is equivalent to the model of the pressure uniform bubble
from the viewpoint of the integral energy balance. It is easy
to check that the uniform bubble model cannot implement
the Eq. (26) for the total energy balance, but provides energy
balance without regard to the vapor kinetic energy (41).

7. On some of a violation of the integral energy balance

The pressure uniformity assumption or bubble unifor-
mity assumption are widely used for various models. How-
ever, the energy balance in Eq. (41) may then not be
fulfilled because of an incomplete consideration of phase
transitions in the integral equation of motion of the liquid
and in equations for pressure drop and heat flux at the
interface. We will write these equations in the form:

q R
dU
dt
þ 3

2
U 2

� �
¼ pR � p1 � sR � Xþ a12jU ð53Þ

pR ¼ pV þ sR �
2r
R
� a2jU ð54Þ

qS � qVS ¼ jwþ a3

j
q

2r
R
� dr

dt
þ a4

1

2
jU 2 ð55Þ

At ai = 1 Eqs. (53)–(55) are exact equations within the gi-
ven limits of this physical model. However, in specific con-
ditions, some terms in the equations are small and may
often be neglected with available simplified approaches.
Such simplified equations can be derived from Eqs. (53)–
(55) by putting specified coefficients ai equal to zero. If
Eqs. (53)–(55) are used for derivation of the equation for
the integral energy balance, instead of Eq. (41) we can
obtain:

dK
dt
þ dE

dt
þ dEV

dt
þ dEr

dt
� Aþ qUSe0

¼ J
2r
qR
ða3 � 1Þ þ U 2 2a1 � a2 þ

1

2
a4 �

3

2

� �� �
ð56Þ

The right-hand side of Eq. (56) reveals what error would
arise in the integral energy balance for various simplifica-
tions of Eqs. (53)–(55).

We also note that the above mathematical models ensur-
ing the exact fulfillment of the integral energy balance in



H. Yang et al. / International Journal of Heat and Mass Transfer 51 (2008) 3623–3629 3629
the form of Eq. (26) or (41) require a numerical realization.
In doing so, the energy balance can break down to one
degree or another because of errors in difference approxi-
mations. Nevertheless, a check of the energy balance will
be very useful in this case too, because, the value of imbal-
ance can serve as an efficient generalized indicator of com-
putational errors.
8. Conclusions

Based on concretization of general laws of hydrodynam-
ics, thermodynamics and heat-and-mass exchange, a math-
ematical model has been obtained that ensures the exact
fulfillment of the system’s integral energy conservation
law for the problem at hand. In doing so, the system energy
includes kinetic energy of the liquid and vapor, internal
energy of the liquid and vapor and surface energy. All ther-
mal and physical properties of the liquid and vapor, except-
ing specific heat capacities are taken to be temperature
dependent. It has been revealed that at a constant pressure
in the liquid at an infinite distance from the bubble, the
basic mathematical model has an analytic solution in the
form of the conservation integral.

It has been revealed that the supposition as to the bub-
ble homobaricity is inconsistent with the exact fulfillment
of total integral energy balance. The models of homobaric
and uniform bubbles have been proposed providing the
exact fulfillment of the integral energy balance without
regard to vapor kinetic energy. A rearrangement allowing
a reduction in the number of partial differential equations
for the model of the pressure uniform bubble has also been
proposed. A relation defining an imbalance in integral
energy for some often-used simplifications of basic equa-
tions has been derived.

The results obtained apply to both the vapor and gas
bubble cases in the absence of dissolution.
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